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• Sensitivity Analysis: Understanding the “overall impact” of

individual inputs or groups of inputs on the output of a computer

model.

• Computer Model: Focus on deterministic models – numerical

implementations of explicitly or implicitly defined functions.

• Today: Review and propose a few approaches for extending

popular sensitivity/uncertainty ideas developed for scalar-valued

inputs to:

– models for which some inputs are themselves functions, and

the output of interest is a scalar. (In fact, the output may be a

scalar-valued summary of a function.)

– further, focus on input functions of one variable, e.g. time.
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Examples involving time-varying inputs:

• Regional environment models. Boundary conditions may be

time-varying functions.

• Chemical reactor models. “Forcing functions” including

temperature, concentration, physical mixing rates.

• Groundwater hydrology models. Rainfall rates, pumping rates.

• Injection molding process models. Heat and pressure schedules.
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Notation and Restrictions:

• Model inputs: (x1...xm, z1(t)...zn(t)) ∈ ∆

• Model output: y = f(x1...xm, z1(t)...zn(t))

• Attention here is focused on scalar t ∈ [0, 1], where zi(t) is

continuous and “well-behaved”

• Will sometimes substitute a long vector of values over a t-grid for

the function:

zi(t)→ zi =



zi(0.00)

zi(0.01)

zi(0.02)

...

zi(1.00)


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Three Basic Approaches popular with scalar-input problems, in
decreasing order of the number of function evaluations generally
required:

• Variance-based sensitivity analysis – A multivariate probability

distribution is specified for x over its domain ∆, representing (ideally)

situational uncertainty about x. The goal is to understand how

variability propogates to y. (e.g. Saltelli et al., 2000)

• Statistical surrogate-based sensitivity analysis – y is assumed to be a

relatively “well behaved” function of x that can be formally predicted or

estimated via statistical modeling. Sensitivity of y to each xi is

assessed through model parameters (Welch et al., 1992), by computing

variance-based indices on the estimate of f , or via a more formal

Bayesian approach (Oakley & O’Hagan, 2004).

• Simple approximation-based sensitivity analysis – The sensitivity of

output to each input is assessed by numerical approximation to ∂y/∂xi,

i = 1, 2, 3, ...,m, or to an average of these quantities over ∆ or some

appropriate subregion (e.g. ±1% about nominal values).



MASCOT-NUM, April 9, 2015 6

A Toy Function for Examples:

y = f(x1, x2, z1, z2) =

∫ 1

t=0

maxs∈(0,t]z1(s)×max[(1− t)x2, z2(t)]2dt

• Note that x1 does nothing

Some pictures:

• zi(t) =

 2t max zi t < 1
2

2(1− t) max zi t ≥ 1
2

i = 1, 2, max zi ∈ [0, 1]

• Unreferenced x or z in each panel = 1
2

x2
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1. Simple approximation-based sensitivity analysis

• Fruth, Roustant, and Kuhnt (2014)

• Restrict attention to input functions z(t) that are:

– piece-wise constant on intervals defined by a grid on t,

G = {0 = t0 < t1 < t2 < ... < tg = 1}
– take one of only two values within each interval

0.0 0.2 0.4 0.6 0.8 1.0

0
1

t

z

• Use a form of sequential bifurcation (Bettonvil, 1995) to

progressively refine G. (Important, but I won’t consider this

aspect here.)
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• For a given G, let zi = (zi1, zi2, ...zig)
′.

• Then y = f(z1(t), z2(t), ..., zn(t)) = f∗(z1, z2, ..., zn), i.e.

reduction to g × n two-level scalar-valued inputs ... there is much

experimental design literature for this case.

• Define “centered” input values z as z̄ = z − 1
2 , so that 0 is the

“nominal” value for each input, and z̄ = ± 1
2 .

• The authors use least-squares to fit data from N model runs:

(α̂, β̂ik, i = 1...n, k = 1...g) = argmin
N∑
j=1

[yj − (α+
n∑
i=1

g∑
k=1

z̄jikβik)]2

• Then use

Ĥik = β̂ik/(tk − tk−1)

as an index of the sensitivity of y to the value of zi within the kth

interval of the t-grid, normalized to be expressed on a per-unit

basis of t.
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• What should we hope to be estimating here?

• Suppose G = {0, 14 ,
1
2 ,

3
4 , 1}

• Test function inputs are represented by 2 x’s and 8 scalar-valued

z’s.

• Each input is then associated with 210−1 = 512 “slopes”

associated with the edges of a 10-dimensional hypercube ... here

they are:
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• Basic sequential bifurcation might lead to an accumulated

experimental design as follows:

x1 x2 z11 z12 z13 z14 z21 z22 z23 z24 y
0 0 0 0 0 0 0 0 0 0 0.0000
1 1 1 1 1 1 1 1 1 1 1.0100
1 1 1 1 1 0 0 0 0 0 0.3384
1 1 1 1 1 1 1 0 0 0 0.3978
1 1 1 1 1 1 1 1 1 0 0.7649
1 1 1 1 1 1 1 1 0 0 0.5504
1 1 0 0 0 0 0 0 0 0 0.0000
1 1 1 1 0 0 0 0 0 0 0.3384
1 1 1 0 0 0 0 0 0 0 0.3384
1 1 1 1 1 1 0 0 0 0 0.3384
1 0 0 0 0 0 0 0 0 0 0.0000

(Note that a different experimental design would have been developed

if the inputs had been listed in a different order ...)
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• Data collected from this design lead to the following values of Ĥ

(compared to the the “truth” from a full 210 design):

x1 x2 z12 z12 z13 z14 z21 z22 z23 z24

0.000 0.000 1.353 0.000 0.000 0.000 0.238 0.610 0.858 0.980

0.000 0.105 1.216 0.497 0.197 0.063 0.320 0.604 0.813 0.928

0.0 0.4 0.8 1.2

0.
0

0.
4

0.
8

1.
2

mean of all from 2^10
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• These errors are not realizations of random noise in the data

(since there is none), but can be thought of as bias in estimators

that have no variance.

• If y = X1β1 is used as the basis of analysis, but the data are

actually generated by a “true” model: y = X1β1 + X2β2 then

the least-squares estimate β1 is

β̂1 = β1 + (X′1X1)−1X′1X2β2 = β1 + Aβ2

• The experimental design determines X1 and X2, and hence the

alias matrix A.

• Mitchell (1974) proposed using ||A|| as an index of design quality

for estimating main-effects models when second-order terms are

present in the data-generating process.

• We modify this idea slightly here to omit the first row of A since

this corresponds to bias in the model intercept, which is of no real

interest to us.
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Ĥ and alias indices for designs of different sizes:

• SB = Sequential Bifurcation (as shown)

• FO SB = Foldover of Sequential Bifurcation design

• PB = minimal Plackett-Burman design

• FO PB = Foldover of Plackett-Burman design

• 210−5
III

= Minimum Aberation Regular Fraction of Resolution III

• 210−4
IV

= Minimum Aberation Regular Fraction of Resolution IV

• 210−3
IV

= (larger) Minimum Aberation Regular Fraction of Resolution IV

• 210 = Full Two-Level Factorial design

design x1 x2 z11 z12 z13 z14 z21 z22 z23 z24 N ||A2|| ||A3||
SB 0.000 0.000 1.353 0.000 0.000 0.000 0.238 0.610 0.858 0.980 11 22.50 22.50

FO SB 0.000 0.000 1.197 0.500 0.500 0.500 0.119 0.305 0.429 0.490 20 0 22.50

PB -0.106 0.104 1.239 0.416 -0.049 -0,035 0.598 0.245 0.394 1.206 12 10.00 5.83

FO PB -0.047 0.066 1.098 0.445 0.079 -0.213 0.340 0.559 0.842 0.879 24 0 5.83

210−6
III

0.017 0.138 1.394 0.674 0.174 0.076 0.325 0.778 0.555 0.817 16 6.00 4.50

210−5
IV

0.014 0.120 1.217 0.496 0.198 0.055 0.173 0.659 0.825 0.938 32 0 2.50

210−4
IV

0.002 0.105 1.216 0.496 0.197 0.063 0.320 0.603 0.751 0.812 64 0 0.50

210 0.000 0.105 1.216 0.497 0.197 0.063 0.320 0.604 0.813 0.928 1024 0 0.00

(Underlines are errors of more than 0.10)
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2. Variance-based sensitivity analysis

• Iooss and Ribatet (2009), Jacques et al. (2006) advocate a direct

extension of the standard approach for scalar inputs, called the

microparameter method.

• Quick reminder of the popular scalar-input approach

A

x1 x2 x3

.23 .46 .81

.71 .52 .33

... ... ...

.48 .21 .50

B

x1 x2 x3

.53 .27 .26

.21 .04 .37

... ... ...

.88 .49 .94

A1

x1 x2 x3

.53 .46 .81

.21 .52 .33

... ... ...

.88 .21 .50

A2

x1 x2 x3

.23 .27 .81

.71 .04 .33

... ... ...

.48 .49 .50

A3

x1 x2 x3

.23 .46 .26

.71 .52 .37

... ... ...

.48 .21 .94

• Then averages of squared differences of outputs corresponding to

paired rows form the basis of sensitivity index estimates:
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• A&B→ V̂ar(y), the unconditional variance

• B&A1 → ̂Ex1Varx2,x3 [y|x1]

– First-Order Sensitivity: Ŝ(x1) = 1− ̂Ex1
Varx2,x3

[y|x1]/V̂ar(y)

• A&A1 → ̂Ex2,x2Varx1 [y|x2, x3]

– Total Sensitivity: T̂ (x1) = ̂Ex2,x2
Varx1

[y|x2, x3]/Var(y)

• and similarly for other inputs, using a different Ai but the same A

and B in each case.
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The same approach can be taken when any or all inputs are functional

• Functional inputs (or their vector approximations) are regarded as

realizations of stochastic processes (or multivariate distributions)

• For example, a Gaussian process with

E(z(t)) = 1
2 , Var(z(t)) = ( 1

6 )2

Corr(z(t1), z(t2)) = e−θ|t1−t2|
1.99

with θ = 10:

• Realizations:

0.0 0.4 0.8

0.
0

0.
4

0.
8

t

z

• In the examples that follow, I use this process model for both z1
and z2, and represent them as 101-element vectors z1 and z2.
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• With:

– x1 and x2 ∼ U [0, 1], and each of z1 and z2 as described above

– 6 input arrays, 100,000 rows per array (600,000 function

evaluations)

results for the example model are:

x1 x2 z1 z2

Ŝ 0.0092 0.1065 0.2565 0.5937

T̂ 0.0000 0.1277 0.2896 0.6382

• This is useful, but it offers little insight into how z1 and z2

influence y.

• Proposal: “Factor” the functional input into one or a few

scalar-valued summaries and an independent functional residual

(of hopefully little importance).
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Special case: Gaussian processes: z ∼ N(µ,Σ)

• Scalar-valued summaries: s = C′z

– e.g. coefficients of a low-order least-squares polynomial

approximation to z

• A “residual”: r = (I−C(C′C)−1C′)Σ−1z

• Both s and r are multivariate normal, and independent, and z can

be recovered from s and r
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• Example:

– Univariate s = z̄

– z generated as before
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• Hence, our example can be viewed as:

y = f(x1, x2, s1, r1, s2, r2)

• Use s1 = ave(z1) and s2 = ave(z2)

• Now 8 input arrays, 100,000 rows per array (800,000 function

evaluations)

x1 x2 s1 r1 s2 r2

Ŝ -0.0068 0.0931 0.1350 0.1096 0.5534 0.0230

T̂ 0 0.1300 0.1656 0.1313 0.5989 0.0472

• s2 is important, while r2 has little impact

• s1 is more important than r1, which is comparable to x2



MASCOT-NUM, April 9, 2015 21

0.0 0.4 0.8

0.
0

0.
4

0.
8

Comparison

sampling z

sa
m

pl
in

g 
s 

an
d 

r

●

●

●

●

●

●

●

●

●

●

S
T

• Comparing S(z1) to S(s1) + S(r1), et cetera
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3. Statistical surrogate-based sensitivity analysis

• Ioose and Ribatet (2009) also discussed using a joint modeling

approach to sensitivity analysis with functional inputs, based on

fitting two models to output data.

• The (conditional) mean and variance of the output are modeled as

functions of scalar-valued inputs only, i.e.

– for inputs = (x1, ..., xm, z1(t), ..., zn(t)),

– estimate models for E(y|x1, ..., xm) and Var(y|x1, ..., xm).

• So, for example, Ex′sVarz′s(y|x′s) can be estimated by integrating

the dispersion model w.r.t. the distribution of x′s, et cetera.

• Authors used GLM and GAM in their examples.

• In this form, the approach does not separate the variability

associated with different functional inputs.
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Here I’ll try something related, and refer to it as “semi-modeling”:

• Draw F realizations of each input function,

zi11 (t)...zinn (t), i1...in = 1...F.

• Model y only for the selected function values, i.e.

y = f(x1...xm, i1...in)

where i1...in are categorical variables, each with values 1...F ,

indexing associated input function values.

• Given training data, fit a single predictive model of the output:

ŷ = f̂(x1...xm, i1...in)
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• Then, for example, using a random sample of size R (much larger

than F ) of each of x1...xm, i1...in and x′1...x
′
m, i
′
1...i

′
n,

– V̂ar(y) = 1
2R

∑R

r=1
(ŷ(xr

1...x
r
m, ir1...i

r
n) − ŷ(x′r

1 ...x
′r
m, i′r1 ...i

′r
n ))2

– T̂ (x1) = 1
2R

∑R

r=1
(ŷ(xr

1...x
r
m, ir1...i

r
n)− ŷ(x′r

1 ...x
r
m, ir1...i

r
n))2/V̂ar(y)

– Ŝ(x1) =

[V̂ar(y) − 1
2R

∑R

r=1
(ŷ(xr

1...x
r
m, ir1...i

r
n) − ŷ(xr

1...x
′r
m, i′r1 ...i

′r
n ))2]/V̂ar(y)

and similarly for other inputs, both scalar and functional.

• Here I model y with a stationary Gaussian stochastic process

model, where for

y = f(x1...xm, i1, ...in), y′ = f(x′1...x
′
m, i
′
1, ...i

′
n),

E(y) = E(y′) = µ,Var(y) = Var(y′) = σ2,Cov(y, y′) = σ2e−dist,

dist =
m∑
j=1

θj(xj − x′j)2 +
n∑
j=1

φjI(ij 6= i′j),

fitting parameters via maximum likelihood.



MASCOT-NUM, April 9, 2015 25

0.0 0.4 0.8

0.
1

0.
3

0.
5

Semi−Modeling

x

y

●
●

●
●

●

●

T(z)
T(x)z1

z2



MASCOT-NUM, April 9, 2015 26

Results for the example model:

• F = 50 realizations of each of x1, x2, z1 and z2, distributed as

before.

• Design constructed by repeating each input value 5 times, and

forming the N = 250-run experimental design via the maximin

distance criterion.

• Result provides a predictor of y for any combination of x1, x2 and

any of the 50 drawn realizations for each of z1 and z2.

• Results (R = 10, 000):

x1 x2 z1 z2

Ŝ 0.0151 0.1299 0.2517 0.5839

T̂ 0.0088 0.1465 0.2715 0.6133
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• Results are consistent with those from the pure sampling-based

approach, but requiring far fewer function evaluations.
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• Replacing z1 with s1 and r1, and z2 with s2 and r2:

x1 x2 s1 r1 s2 r2

Ŝ 0.0062 0.0884 0.1664 0.0662 0.5931 0.0420

T̂ 0.0057 0.1069 0.1745 0.0782 0.6124 0.0412
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Concluding thoughts:

• Can more bias-resistant alternatives to Sequential Bifurcation be

developed for the piecewise constant inputs case (that doesn’t

require too many runs)?

• Traditional variance-based sensitivity analysis may be most

effective if functional inputs can be decomposed into independent

(1.) important low-dimensional, and (2.) less important

higher-dimensional components.

• Meta-models that are accurate approximations for a moderate

sample of functional inputs may improve the efficiency of

variance-based sensitivity analysis.
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